253 research outputs found

    Functionally guided alignment of protein interaction networks for module detection

    Get PDF
    Motivation: Functional module detection within protein interaction networks is a challenging problem due to the sparsity of data and presence of errors. Computational techniques for this task range from purely graph theoretical approaches involving single networks to alignment of multiple networks from several species. Current network alignment methods all rely on protein sequence similarity to map proteins across species

    Protein protein interactions, evolutionary rate, abundance and age

    Get PDF
    BACKGROUND: Does a relationship exist between a protein's evolutionary rate and its number of interactions? This relationship has been put forward many times, based on a biological premise that a highly interacting protein will be more restricted in its sequence changes. However, to date several studies have voiced conflicting views on the presence or absence of such a relationship. RESULTS: Here we perform a large scale study over multiple data sets in order to demonstrate that the major reason for conflict between previous studies is the use of different but overlapping datasets. We show that lack of correlation, between evolutionary rate and number of interactions in a data set is related to the error rate. We also demonstrate that the correlation is not an artifact of the underlying distributions of evolutionary distance and interactions and is therefore likely to be biologically relevant. Further to this, we consider the claim that the dependence is due to gene expression levels and find some supporting evidence. A strong and positive correlation between the number of interactions and the age of a protein is also observed and we show this relationship is independent of expression levels. CONCLUSION: A correlation between number of interactions and evolutionary rate is observed but is dependent on the accuracy of the dataset being used. However it appears that the number of interactions a protein participates in depends more on the age of the protein than the rate at which it changes

    Using Phylogeny to Improve Genome-Wide Distant Homology Recognition

    Get PDF
    The gap between the number of known protein sequences and structures continues to widen, particularly as a result of sequencing projects for entire genomes. Recently there have been many attempts to generate structural assignments to all genes on sets of completed genomes using fold-recognition methods. We developed a method that detects false positives made by these genome-wide structural assignment experiments by identifying isolated occurrences. The method was tested using two sets of assignments, generated by SUPERFAMILY and PSI-BLAST, on 150 completed genomes. A phylogeny of these genomes was built and a parsimony algorithm was used to identify isolated occurrences by detecting occurrences that cause a gain at leaf level. Isolated occurrences tend to have high e-values, and in both sets of assignments, a sudden increase in isolated occurrences is observed for e-values >10(āˆ’8) for SUPERFAMILY and >10(āˆ’4) for PSI-BLAST. Conditions to predict false positives are based on these results. Independent tests confirm that the predicted false positives are indeed more likely to be incorrectly assigned. Evaluation of the predicted false positives also showed that the accuracy of profile-based fold-recognition methods might depend on secondary structure content and sequence length. We show that false positives generated by fold-recognition methods can be identified by considering structural occurrence patterns on completed genomes; occurrences that are isolated within the phylogeny tend to be less reliable. The method provides a new independent way to examine the quality of fold assignments and may be used to improve the output of any genome-wide fold assignment method

    PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences

    Full text link
    The last few years have seen the development of numerous deep learning-based protein-ligand docking methods. They offer huge promise in terms of speed and accuracy. However, despite claims of state-of-the-art performance in terms of crystallographic root-mean-square deviation (RMSD), upon closer inspection, it has become apparent that they often produce physically implausible molecular structures. It is therefore not sufficient to evaluate these methods solely by RMSD to a native binding mode. It is vital, particularly for deep learning-based methods, that they are also evaluated on steric and energetic criteria. We present PoseBusters, a Python package that performs a series of standard quality checks using the well-established cheminformatics toolkit RDKit. Only methods that both pass these checks and predict native-like binding modes should be classed as having "state-of-the-art" performance. We use PoseBusters to compare five deep learning-based docking methods (DeepDock, DiffDock, EquiBind, TankBind, and Uni-Mol) and two well-established standard docking methods (AutoDock Vina and CCDC Gold) with and without an additional post-prediction energy minimisation step using a molecular mechanics force field. We show that both in terms of physical plausibility and the ability to generalise to examples that are distinct from the training data, no deep learning-based method yet outperforms classical docking tools. In addition, we find that molecular mechanics force fields contain docking-relevant physics missing from deep-learning methods. PoseBusters allows practitioners to assess docking and molecular generation methods and may inspire new inductive biases still required to improve deep learning-based methods, which will help drive the development of more accurate and more realistic predictions.Comment: 10 pages, 6 figures, version 2 added an additional filter to the PoseBusters Benchmark set to remove ligands with crystal contacts, version 3 corrected the description of the binding site used for Uni-Mo

    PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences

    Get PDF
    The last few years have seen the development of numerous deep learning-based protein-ligand docking methods. They offer huge promise in terms of speed and accuracy. However, despite claims of state-of-the-art performance in terms of crystallographic root-mean-square deviation (RMSD), upon closer inspection, it has become apparent that they often produce physically implausible molecular structures. It is therefore not sufficient to evaluate these methods solely by RMSD to a native binding mode. It is vital, particularly for deep learning-based methods, that they are also evaluated on steric and energetic criteria. We present PoseBusters, a Python package that performs a series of standard quality checks using the well-established cheminformatics toolkit RDKit. The PoseBusters test suite validates chemical and geometric consistency of a ligand including its stereochemistry, and the physical plausibility of intra- and intermolecular measurements such as the planarity of aromatic rings, standard bond lengths, and protein-ligand clashes. Only methods that both pass these checks and predict native-like binding modes should be classed as having "state-of-the-art" performance. We use PoseBusters to compare five deep learning-based docking methods (DeepDock, DiffDock, EquiBind, TankBind, and Uni-Mol) and two well-established standard docking methods (AutoDock Vina and CCDC Gold) with and without an additional post-prediction energy minimisation step using a molecular mechanics force field. We show that both in terms of physical plausibility and the ability to generalise to examples that are distinct from the training data, no deep learning-based method yet outperforms classical docking tools. In addition, we find that molecular mechanics force fields contain docking-relevant physics missing from deep-learning methods. PoseBusters allows practitioners to assess docking and molecular generation methods and may inspire new inductive biases still required to improve deep learning-based methods, which will help drive the development of more accurate and more realistic predictions

    Identifying networks with common organizational principles

    Full text link
    Many complex systems can be represented as networks, and the problem of network comparison is becoming increasingly relevant. There are many techniques for network comparison, from simply comparing network summary statistics to sophisticated but computationally costly alignment-based approaches. Yet it remains challenging to accurately cluster networks that are of a different size and density, but hypothesized to be structurally similar. In this paper, we address this problem by introducing a new network comparison methodology that is aimed at identifying common organizational principles in networks. The methodology is simple, intuitive and applicable in a wide variety of settings ranging from the functional classification of proteins to tracking the evolution of a world trade network.Comment: 26 pages, 7 figure

    It is theoretically possible to avoid misfolding into non-covalent lasso entanglements using small molecule drugs

    Get PDF
    A novel class of protein misfolding characterized by either the formation of non-native noncovalent lasso entanglements in the misfolded structure or loss of native entanglements has been predicted to exist and found circumstantial support through biochemical assays and limited-proteolysis mass spectrometry data. Here, we examine whether it is possible to design small molecule compounds that can bind to specific folding intermediates and thereby avoid these misfolded states in computer simulations under idealized conditions (perfect drug-binding specificity, zero promiscuity, and a smooth energy landscape). Studying two proteins, type III chloramphenicol acetyltransferase (CAT-III) and D-alanyl-D-alanine ligase B (DDLB), that were previously suggested to form soluble misfolded states through a mechanism involving a failure-to-form of native entanglements, we explore two different drug design strategies using coarse-grained structure-based models. The first strategy, in which the native entanglement is stabilized by drug binding, failed to decrease misfolding because it formed an alternative entanglement at a nearby region. The second strategy, in which a small molecule was designed to bind to a non-native tertiary structure and thereby destabilize the native entanglement, succeeded in decreasing misfolding and increasing the native state population. This strategy worked because destabilizing the entanglement loop provided more time for the threading segment to position itself correctly to be wrapped by the loop to form the native entanglement. Further, we computationally identified several FDA-approved drugs with the potential to bind these intermediate states and rescue misfolding in these proteins. This study suggests it is possible for small molecule drugs to prevent protein misfolding of this type

    KA-Search, a method for rapid and exhaustive sequence identity search of known antibodies

    Get PDF
    Antibodies with similar amino acid sequences, especially across their complementarity-determining regions, often share properties. Finding that an antibody of interest has a similar sequence to naturally expressed antibodies in healthy or diseased repertoires is a powerful approach for the prediction of antibody properties, such as immunogenicity or antigen specificity. However, as the number of available antibody sequences is now in the billions and continuing to grow, repertoire mining for similar sequences has become increasingly computationally expensive. Existing approaches are limited by either being low-throughput, non-exhaustive, not antibody specific, or only searching against entire chain sequences. Therefore, there is a need for a specialized tool, optimized for a rapid and exhaustive search of any antibody region against all known antibodies, to better utilize the full breadth of available repertoire sequences. We introduce Known Antibody Search (KA-Search), a tool that allows for the rapid search of billions of antibody variable domains by amino acid sequence identity across either the variable domain, the complementarity-determining regions, or a user defined antibody region. We show KA-Search in operation on the āˆ¼2.4 billion antibody sequences available in the OAS database. KA-Search can be used to find the most similar sequences from OAS within 30 minutes and a representative subset of 10 million sequences in less than 9 seconds. We give examples of how KA-Search can be used to obtain new insights about an antibody of interest. KA-Search is freely available at https://github.com/oxpig/kasearch

    Contextualising the developability risk of antibodies with lambda light chains using enhanced therapeutic antibody profiling

    Get PDF
    Antibodies with lambda light chains (Ī»-antibodies) are generally considered to be less developable than those with kappa light chains (Īŗ-antibodies). Though this hypothesis has not been formally established, it has led to substantial systematic biases in drug discovery pipelines and thus contributed to kappa dominance amongst clinical-stage therapeutics. However, the identification of increasing numbers of epitopes preferentially engaged by Ī»-antibodies shows there is a functional cost to neglecting to consider them as potential lead candidates. Here, we update our Therapeutic Antibody Profiler (TAP) tool to use the latest data and machine learning-based structure prediction, and apply it to evaluate developability risk profiles for Īŗ-antibodies and Ī»-antibodies based on their surface physicochemical properties. We find that while human Ī»-antibodies on average have a higher risk of developability issues than Īŗ-antibodies, a sizeable proportion are assigned lower-risk profiles by TAP and should represent more tractable candidates for therapeutic development. Through a comparative analysis of the low- and high-risk populations, we highlight opportunities for strategic design that TAP suggests would enrich for more developable Ī»-antibodies. Overall, we provide context to the differing developability of Īŗ- and Ī»-antibodies, enabling a rational approach to incorporate more diversity into the initial pool of immunotherapeutic candidates

    Inverse folding for antibody sequence design using deep learning

    Full text link
    We consider the problem of antibody sequence design given 3D structural information. Building on previous work, we propose a fine-tuned inverse folding model that is specifically optimised for antibody structures and outperforms generic protein models on sequence recovery and structure robustness when applied on antibodies, with notable improvement on the hypervariable CDR-H3 loop. We study the canonical conformations of complementarity-determining regions and find improved encoding of these loops into known clusters. Finally, we consider the applications of our model to drug discovery and binder design and evaluate the quality of proposed sequences using physics-based methods.Comment: 2023 ICML Workshop on Computational Biology, model weights available at https://zenodo.org/record/816469
    • ā€¦
    corecore